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Abstract: The composition and concentration of Volatile Organic Compounds (VOCs) in the atmosphere can reflect the 

quality of the air, and the environmental quality changes with the quantity of these compounds. When unknown VOCs 

are encountered, researchers usually use gas chromatography-mass spectrometry (GC-MS) to measure and analyze them. 

This discriminative mode requires data analysts with a certain theoretical and practical foundation, is demanding and 

labor-intensive, and may also introduce errors due to the numerous steps. In order to solve these problems, we propose a 

deep learning and mass spectrum based method for the analysis of Vocs components. Using the deep learning technique, 

first, a high-quality mass spectral library is constructed as a reference library using molecular fingerprint information, 

and then, the sample data obtained in the GC-MS gas chromatography-mass spectrometer is preprocessed with data to 

extract mass spectra that can represent the VOCs components; finally, the selected candidate mass spectra are library 

matched with the reference library to return high matching VOCs components results. The experimental results show that 

the method can accurately and quickly discriminate the components of VOCs. 
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1 Introduction 

The unorganized emission of VOCs in industry is an 

important factor in polluting the air environment [1], and 

it is difficult to monitor and evaluate the unorganized 

emission of VOCs. GC-MS technology is widely used for 

the separation and identification of compound 

components, and researchers can obtain information on 

the molecular weight and chemical structure of 

compounds by using this method to analyze mass spectra 

[2]. However, the current GC-MS compound component 

identification technology has high standards for data 

personnel, requiring a certain theoretical and practical 

basis, and such personnel require a certain amount of time 

for training, which cannot be replicated by training in the 

short term. And the GC-MS instrumentation produces a 

large amount of data, according to incomplete statistics, a 

site produces a year the amount of data in 1 million, each 

data requires professional data analysts to spend 30s-2min 

to analyze, the workload is large. 

Based on the above problems, we propose a deep 

learning and mass spectrum based analysis method of 

vocs components, The method first uses the molecular 

fingerprints of the VOCs components to construct a mass 

spectral library as a reference library through a neural 

network; Then use the mass spectrum matching model to 

match the similarity of the candidate mass spectrum 

obtained after sample pre-processing with the reference 

library and return the matching result sequence. To 

summarize, the main contributions of this work are as 

http://dx.doi.org/10.57237/j.wjese.2023.02.006
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follows: 

1) For the problem that VOCs composition analysis 

requires professional data analysts and the analysis 

steps are cumbersome, this paper establishes a 

complete implementable process from data 

pre-processing to VOCs composition analysis based 

on deep learning, and proves through experiments 

that the method can significantly improve the 

efficiency of current VOCs composition monitoring 

while using deep learning methods no less effective 

than manual monitoring. 

2) A lightweight mass spectrometry generation model 

is proposed, which can rapidly generate the 

corresponding mass spectra of molecules based on 

the molecular fingerprint information of small 

molecules and build a high-quality mass 

spectrometry library. Recall@10 achieves 90.2% on 

the NIST dataset. 

3) Component analysis of candidate mass spectra using 

an MS2DeepScore twin neural network model that 

extracts potential feature information from the mass 

spectra to identify highly reliable structural matches 

and predicts the Tanimoto similarity scores of 

molecular pairs based on their fragment spectra, 

yielding a high-quality vector representation. 

2 Related Work 

2.1 Current Status of Component 

Monitoring of VOCs 

In recent years, with the rising energy consumption, 

global VOCs emissions continue to grow, atmospheric 

environmental problems have become more and more 

prominent, especially ozone pollution, which has plagued 

atmospheric air quality in recent years, has become more 

and more serious [3]. Most VOCs carry an unpleasant and 

peculiar odor, especially the irritating VOCs such as 

benzene, formaldehyde and toluene can pose a great threat 

to people's health [4]. To improve the quality of the 

atmosphere and people's living environment, enhanced 

monitoring of VOCs is necessary. 

Current VOCs monitoring requires data analysts with 

certain expertise to repeatedly review and confirm VOCs 

component information, which cannot be replicated in the 

short term due to the theoretical knowledge required by 

data analysts and the large volume of data generated by 

GC-MS. Therefore, automatic VOCs component analysis 

technology is particularly important. 

2.2 Deep Learning in the Environmental 

Domain 

With the booming development and popularity of deep 

learning [5], deep learning, as a new means of automatic 

extraction of high-dimensional nonlinear complex 

features, is becoming a new engine for data processing in 

academia and industry, and various industries are 

beginning to explore its applications. 

In recent years, deep learning based methods have 

emerged in the field of environmental monitoring, and 

have become a new direction in the development of 

research in the field of environmental monitoring. For 

example, Xiang Li et al. [6] (2016) proposed a new 

spatiotemporal deep learning (STDL)-based air quality 

prediction method that considers spatio and temporal 

correlation of air quality data in the modeling process and 

automatically learns potential air quality features using a 

stacked self-encoder model, and uses the learned 

representations to construct regression models for air 

quality prediction. Zhendong Zhang et al. [7] proposed a 

hybrid deep learning model VMDBiLSTM, which 

combines variational mode decomposition (VMD) and 

bidirectional long short-term memory network (BiLSTM) 

to predict the PM2.5 in air. VMD decomposes the original 

PM2.5 complex time series data into multiple sub-signal 

components according to the frequency domain. Then, 

each sub-signal component is predicted separately using 

BiLSTM, which significantly improves the prediction 

accuracy. 

3 Methodology 

The VOCs component analysis method is divided into 

two sub-modules: Mass Spectrl Library Construction 

module and Library Matching module. The purpose of the 

Mass Spectrl Library Construction module is to build a 

library of mass spectra of VOCs in advance to serve the 

library matching module; the purpose of the library 

matching module is to search the mass spectra of VOCs to 

be analyzed in the already built library, and to use the 

compounds with good matches in the library as the 

component analysis results. 
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3.1 Mass Spectral Library Construction 

The purpose of the Mass Spectral Library Construction 

module is to design a mass spectral map generation model 

that can accurately predict the GC-MS mass spectra of 

any volatile organic molecule, and use the model to 

generate a mass spectral map library as a reference library, 

and the generated mass spectral map library is used as part 

of the input for the subsequent library matching module. 

The Mass Spectral Library Construction module can be 

divided into two steps: Molecular Fingerprint Extraction 

and Mass spectrometry Generation. Molecular Fingerprint 

Extraction is a method to convert the chemical 

expressions of molecules into computer-readable vectors; 

Mass Spectrometry Generation is a method to convert the 

extracted molecular fingerprints into mass spectrometry 

data using a mass spectrometry generation model. The 

architecture of Mass Spectrometry Construction is shown 

in Figure 1. 

 

Figure 1 The architecture of mass spectrometry construction 

3.1.1 Molecular Fingerprint Extraction 

Molecular fingerprinting [8] refers to a method to 

describe the structural characteristics of molecules. It 

generates a set of numbers or binary coding sequences to 

represent the structural information of a molecule by 

encoding features such as chemical bonds, atomic 

species, and distances between atoms. Molecular 

fingerprinting can be used in fields such as computer 

simulation [9], chemoinformatics [10] and drug design 

[11]. Molecular fingerprints can be classified into 

various types [12], such as topology-based fingerprints 

[13], structural keys fingerprints [14], Circular 

fingerprints [15], etc. Based on these fingerprints, we 

can use various machine learning algorithms to perform 

molecular structure analysis and drug design tasks such 

as classification [16], clustering [17], and similarity 

comparison [18]. The following are general molecular 

fingerprinting extraction steps. 

1) Representation of molecules: First, convert chemical 

molecules into a set of chemical descriptors, such as 

SMILES [19] (Simplified Molecular Input Line 

Entry System) or InChI [20] (International Chemical 

Identifier), etc. 

2) Select fingerprinting algorithm: Select a suitable 

molecular fingerprinting algorithm, such as ECFP 

[21] (Extended-Connectivity Fingerprints), MACCS 

[22] (Molecular Access System), etc. 

3) Fingerprint descriptor: Generate a fingerprint 
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descriptor based on the selected fingerprint 

algorithm. A fingerprint descriptor is a fixed-length 

binary or integer vector that represents the structure 

and characteristics of a molecule. 

4) De-duplication: It is usually necessary to 

de-duplicate the fingerprint descriptors to reduce the 

dimensionality of the data and improve the 

computational efficiency. 

5) Normalization: The fingerprint descriptors are 

normalized so that the values of each fingerprint 

descriptor are in the same range of values to avoid 

the differences between different fingerprint 

descriptors from adversely affecting the model 

training and prediction. 

There are many molecular fingerprinting extraction 

toolkits available, such as RDKit [23], an open source 

package for molecular design and drug discovery, which 

provides a number of molecular descriptors and 

fingerprinting calculations, making it easier to implement 

the above molecular fingerprinting. In this paper, we use 

RDKit toolkit and choose ECFP molecular fingerprinting 

algorithm to extract molecular fingerprints of volatile 

organic molecules. 

3.1.2 Mass Spectrogram Generation 

Mass spectrometry [24] is an analytical technique 

widely used in chemistry, biology and medicine to 

identify and quantitatively analyze compounds. In mass 

spectrometry, molecules of compounds are ionized into 

charged ions by a mass spectrometer, and ions with 

different mass-to-charge ratios are separated by the action 

of a magnetic or electric field, and finally these ions are 

focused onto an ion detector for detection, and the image 

between ion signal intensity and mass-to-charge ratio is 

obtained as a mass spectrogram. 

Mass spectra usually have two axes, one is the 

mass-to-charge ratio axis and the other is the ion signal 

axis. The mass-to-charge axis is the ratio of the mass to 

the charge of the ion, which is the relative molecular mass 

of the ion. The ion signal axis is the intensity of the signal 

produced by each ion on the ion detector. 

The mass spectrometry generation is viewed as a 

multiple regression problem, where the molecular 

fingerprint vectors are fed into the model and the final 

output is the intensity value corresponding to each 

mass-to-charge ratio in the mass spectrometry. The model 

architecture is selected from a multilayer perceptron for 

feature extraction, and the model architecture diagram is 

shown in Figure 2. 

 

Figure 2 Mass spectrum generation model 

Model Training. The mass spectrum generation model 

uses a modified mean squared loss[25] as a loss function 

to evaluate the difference between the predicted mass 

spectrum and the true mass spectrum. The loss function is 

formulated as follows: 
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where 𝐼 is the real mass spectrum data, and 𝐼 is the 

predicted mass spectrum data, and 𝑀(𝑥) is the mass of 

the molecule. The parameters of the model were 

optimized using the Adam [26] optimizer using the 

stochastic gradient descent (SGD) method. 

3.2 Library Matching 

The purpose of the library matching module is to 

design a similarity matching model to retrieve the mass 

spectra with high matching scores from the mass spectral 

library, so as to obtain the components of the candidate 

mass spectra. The library matching module is divided into 

two sub-modules: data preprocessing module and mass 

spectrum matching module. The purpose of the data 

preprocessing module is to standardize the data collected 

from the instrument and extract the valid mass spectra 

from the standard data. The mass spectrum matching 

module uses a MS2DeepScore [27] model to retrieve the 

mass spectra obtained after data preprocessing in a 

reference library and return their component information. 
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3.2.1 Data Preprocessing 

The raw data obtained from GCMS instrumentation 

usually has a lot of noise due to the environment and 

instrumentation, resulting in low quality raw data, and 

low quality data usually has a negative impact on data 

mining and model training [28]. GC-MS raw data are 

composed of two dimensions: mass-to-charge ratio (m/z) 

and retention time. Each row in the raw data represents 

the intensity of different mass-to-charge ratios at the same 

retention time, and the mass-to-charge ratio as the 

horizontal axis and the intensity of the mass-to-charge 

ratio as the vertical axis can be obtained for the mass 

spectrum at this retention time. Each column represents 

the change in intensity for different retention times at the 

same mass-to-charge ratio. Using retention time as the 

horizontal axis and intensity as the vertical axis one can 

obtain an ion chromatogram for that mass-to-charge ratio. 

Typically, the instrument is scanned five times per 

second and the mass-to- charge ratio at the same moment 

is recorded and summed by the mass spectrometry 

software. The graph with the retention time on the 

horizontal axis and the sum of all mass-to-charge ratios on 

the vertical axis is called Total Ion Chromatography (TIC). 

Data preprocessing is mainly done by processing the TIC 

to obtain mass spectral data valid at a certain retention 

time for library matching tasks. 

The data preprocessing includes the following steps: 

denoise, baseline correction, and find peak. 

1) Denoise 

The purpose of denoise is to reduce the influence of 

instrument state changes [29]. The commonly used 

denoise methods include Fourier transform, discrete 

wavelet transform, Savitzky-Golay filter, etc. The Fourier 

transform has good performance for stable signals and 

performs poorly for unstable signals. The discrete wavelet 

transform can decompose and reconstruct the signal at 

multiple scales. The wavelet function is suitable for 

removing homoskedastic noise but not heteroskedastic 

noise. Savitzky-Golay filter is a filtering method based on 

a local polynomial least squares fit in the time domain. 

The most important feature of this filter is that the shape 

and width of the signal can be ensured to be constant 

while filtering out the noise. 

2) Baseline corrction 

Baseline removal is extremely important because poor 

baseline correction may lead to corruption of the data, 

affecting quantification and data analysis, and it can also 

affect later work [30]. There are different baseline 

correction methods available, such as Alternating Least 

Squares (ALS) [31], Sensitive nonlinear iterative peak 

(SNIP) [32] and TopHat [33]. It is worth noting that a 

good baseline correction is a great improvement for the 

accuracy of the later peak finding algorithms. 

3) Find peak 

The mass spectral data that can be analyzed for 

components are determined by finding the peaks of the 

total ion chromatogram. Commonly used peak finding 

algorithms include the use of local maxima, continuous 

wavelet transform, and first-order differencing. With the 

development of deep learning in the field of 

environmental science and signal processing, neural 

network based peak finding algorithms are becoming 

popular [34]. 

3.2.2 Mass Spectral Matching 

Mass spectral matching can be thought of as calculating 

the similarity between mass spectra. There are many ways 

to measure the similarity of mass spectra, but the current 

methods have a limitation: the method used to measure 

the similarity between two mass spectra is usually based 

on the structural similarity of the compounds. For 

example, in practice, molecular fingerprints of molecules 

are usually calculated using similarity functions such as 

cosine similarity, yet molecular fingerprints are calculated 

from the chemical structure, which only accounts for a 

fraction of the complexity of the compound. We therefore 

propose to use an end-to-end approach that relies only on 

deep learning models to predict the structural similarity of 

compounds directly from mass spectra, thus avoiding the 

traditional computational approach by comparing 

molecular fingerprint. 

We choose a siamese network structured mass spectral 

matching model (MS2DeepScore) with the aim of 

predicting the structural similarity of the two input mass 

spectra, and the Tanimoto similarity is used as the label 

during training. The Tanimoto similarity is shown in 

equation (2). 

𝑇 = 𝑐/(𝑎 + 𝑏 − 𝑐)              (2) 

where a and b denote the number of features in the two 

molecules, respectively, and c denotes the number of 

features common to these two molecules. Usually, the 

value of Tanimoto similarity ranges from 0 to 1, and 

higher values indicate that the two molecules are more 

similar. 
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Figure 3 Mass spectrum matching model 

The mass spectrum matching model is shown Figure 

3. The input two mass spectra of the MS2DeepScore 

model are first passed through the two base networks 

separately to obtain their respective vector 

representations after feature extraction, and again, due 

to the simple structure of the mass spectral data, a fully 

connected layer is used as the network architecture of 

the base network. After obtaining the mass spectrum 

vector representations, the two mass spectrum vectors 

will interact in the similarity calculation layer to obtain 

the structural similarity of the corresponding molecules 

of the mass spectra. 

Model training. The model training process uses mean 

square error (MSE) as the loss function, The loss function 

is formulated as follows: 

MSE(𝑌, �̂�) =
1

𝑛
∑  𝑛

𝑖=1 (𝑌𝑖 − �̂�𝑖)
2
        (3) 

Where 𝑌 is the real Tanimoto similarity, and �̂� is 

the similarity score predicted by the model. Stochastic 

gradient descent was used and Adam was chosen as the 

optimizer to optimize the mean squared loss function. 

We used a training batch is 32 and learning rate is 

0.001. 

4 Experiments 

4.1 Experimental Environment 

The experiments were conducted using the Tensorflow 

open source framework and CUDA-GPU acceleration 

scheme under Ubantu 20.04 operating system, with 

NVIDIA RTX A6000 for acceleration of the training and 

other major hardware such as AMD Ryzen Threadripper 

PRO 3995WX 64-Cores and 1T SSD. 

4.2 Dataset 

1) NIST Mass Spectral Library [35]. The NIST Mass 

Spectral Library is a fully evaluated collection of 

electron ionization (EI) and MS/MS mass spectra 

containing chemical and gas chromatography data. 

The NIST Mass Spectrometry Library contains 

more than 1 million mass spectra, including 306,000 

EI spectra and 1,320,000 tandem MS/MS spectra for 

350,000 compounds. The library is the result of 

more than 30 years of comprehensive evaluation 

and expansion of the world's most widely used mass 
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spectrometry reference library by a team of 

experienced mass spectrometry experts at the 

National Institute of Standards and Technology 

(NIST), and every spectrum has been tested for 

correctness. The mass spectrum generation model 

was trained using 240,942 mass spectra data from 

the NIST Mass Spectral Main Library. 

2) GNPS spectral library [36]. GNPS (Global Natural 

Products Social) is a visualization network system 

for natural products based on secondary mass 

spectral data. The MS2DeepScore model was 

trained using 210407 MS/ MS spectra collected in 

GNPS. 

4.3 Metric 

1) Recall. The recall is calculated as the ratio between 

the number of Positive samples correctly classified as 

Positive to the total number of Positive samples. The 

recall measures the model's ability to detect Positive 

samples. The higher the recall, the more positive samples 

detected. 

recall =
TP

TP+FN
  

Where TP is true positive and FN is false negative. 

2) Accuracy. The proportion of the number of correct 

predictions to the total number of positive and negative 

cases. 

ACC =
TP+TN

TP+FP+FN+TN
  

Where TP is true positive, TN is true negative, FP is 

false positive, and FN is false negative. 

4.4 Analysis of Experiments and Results 

In this section. The experimental results of the two 

steps of the VOCs components analysis method are 

described respectively. 

1) Mass spectrum generation. 

Several traditional machine learning models were 

selected on the NIST dataset to compare with the 

multilayer perceptron based mass spectrometry generation 

model, and the experimental results were evaluated using 

Recall@10 as an evaluation metric to prove the 

effectiveness of the mass spectrum generation model. The 

methods used for the experimental comparison are: linear 

regression [37], and decision tree regression [38]. The 

results are shown in the following Table 1. 

Table 1 Experimental results of mass spectrum generation 
comparison 

algorithm Recall@10 

linear regression 22.9 

Decision tree regression 33.3 

multi-layer perceptron 90.2 

As can be seen from Table 1, the Recall@10 results of 

linear regression and decision tree regression are poor, 

However, the multi-layer perceptron model Recall@10 

can reach 90.2% in the same situation. By analyzing the 

positive samples not recalled by linear regression and 

decision tree regression and the negative samples with 

wrong recall, the reasons for the model errors are as 

follows: the difference in features between the negative 

samples with wrong recall and the positive samples is not 

obvious, and there is some similarity in the extracted 

molecular fingerprint vectors, and the model cannot 

accurately capture the key feature information of the 

molecular fingerprint. In contrast, the multilayer 

perceptron model with strong feature representation can 

better capture the key feature information and thus 

perform better. 

2) Library matching. 

To test the effectiveness of the MS2DeepScore model, 

three model algorithms are used in this paper for training 

and testing under the same conditions: cosine similarity 

[39], modified cosine similarity, and Spec2vec [40]. 

The modified cosine similarity function is an 

enhancement of the cosine similarity function that 

alleviates the problem that the traditional cosine similarity 

only responds to directional information and not to 

positional information. Spec2Vec is a mass spectral 

similarity scoring algorithm based on the Word2Vec 

algorithm in natural language processing that learns mass 

fragmentation and neutral loss in MS/MS mass spectra. 

Since the distribution of the data set collected from the 

GNPS spectral library is unbalanced and most of the mass 

spectra have low Tanimoto similaritys, to avoid that the 

mass spectral pairs with low Tanimoto similarity matching 

results will have a great influence on the results, a box 

splitting operation was used to divide all possible mass 

spectral pairs into 10 equally spaced boxes of Tanimoto 

fractions. For the definition of correlation, we considered 

that a mass spectrum pair is correlated when its valley 

principal similarity exceeds 0.6, otherwise it is not 

correlated. The check-all rate and check-accuracy rate of 

different algorithm models were also analyzed by the 

precision versus recall curves, and the precision versus 
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recall curves are shown in Figure 3. 

 

Figure 4 Precision/recall 

From Figure 4, it can be seen that the MS2DeepScore 

model has better combined accuracy and recall results, 

followed by Spec2Vec and then modified cosine similarity, 

with the cosine similarity algorithm performing the worst. 

Based on the data analysis, it is found that the plain cosine 

similarity function and the modified cosine similarity 

function will perform better for mass spectrogram data 

with many identical peaks, while the results tend to be 

less satisfactory when the peaks of the two mass 

spectrogram data differ. Spec2Vec is an unsupervised 

machine learning method that has the advantage of being 

able to train without labeling and learn the distribution of 

the data from the data, i.e., the relationship between peaks 

in a mass spectrum from peak co-occurrence. This 

characteristic of Spec2Vec also leads to the inability to 

learn the structural information of the molecules 

corresponding to the mass spectra. MS2DeepScore is a 

supervised learning deep learning model that uses the 

predicted values of mass spectra on similarity with the 

corresponding molecule's Tanimoto similaritys to learn 

the distribution of mass spectral data while also uniting 

the structural information of molecules for training. As 

can be seen from Figure 3, the MS2DeepScore model that 

incorporates the use of deep learning network with 

molecular structure information has improved in precision 

and recall compared to the traditional machine learning 

methods of cosine similarity method and Spec2Vec. 

3) Case Study 

By gathering data in a real-world setting, this part puts 

the technique put forth in this paper to the test. The 

collection consists of 550 data obtained from meters 

bearing the Agilent brand, with a total of ten typical VOC 

components. Table 2 displays the dataset's details. 

Table 2 Agilent meters collect VOCs data details 

VOCs Component Number 

Propylene 59 

chloroethylene 45 

Butadiene 57 

Acetone 52 

n-Hexane 58 

Benzene 49 

n-Heptane 68 

Chlorobenzene 64 

Ethylbenzene 46 

o-Xylene 52 

The data collected above was preprocessed with data 

and then it was input to the trained MS2DeepScore model 

for library matching together with the constructed mass 

spectrometry library, and finally the predicted component 

results were obtained and then compared with the 

manually labeled real labels, and the evaluation metrics 

are shown in Table 3. 
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Table 3 Accuracy of VOCs components 

VOCs Component Number 

Propylene 59 

chloroethylene 45 

Butadiene 57 

Acetone 52 

n-Hexane 58 

Benzene 49 

n-Heptane 68 

Chlorobenzene 64 

Ethylbenzene 46 

o-Xylene 52 

Table 3 shows that the method has a good recognition 

effect on different VOCs components, demonstrating that 

deep learning technology can effectively extract and 

retrieve the feature information of the original data from 

the VOCs components based on this feature information, 

and that this method has a stronger generalization ability. 

However, the method is not yet able to achieve fully 

correct recognition accuracy for the target data. 

5 Conclusion 

In this paper, we analyze the characteristics of VOCs 

data and use a deep learning network model to 

automatically identify VOCs components. The proposed 

method for component analysis of VOCs based on deep 

learning and mass spectrum firstly obtains component 

results by constructing a high-quality mass spectral library 

as a reference library for library matching, and then using 

a library matching model to search the mass spectra of the 

components to be predicted in the reference library. The 

experimental results show that the use of deep learning 

modeling has a good automatic identification capability 

for VOCs components, while achieving automated 

intelligent monitoring of atmospheric VOCs, which 

greatly reduces the time consumed by data reviewers and 

provides a new way of thinking for atmospheric 

environmental protection. 

In the Mass Spectral Library Construction module, the 

MLP is used as the backbone of Mass Spectrogram 

Generation in consideration of the efficiency, but if there 

is too much information of the mass spectral library to be 

constructed, the problem of insufficient ability of this 

model for the generation of mass spectra will be slowly 

exposed, and find a generation model with both 

generation capability and efficiency will be the direction 

of our subsequent work. In addition, current methods still 

need to do some data preprocessing tasks and the data 

preprocessing phase is still time-consuming, so exploring 

a solution that does not require data preprocessing is also 

one of the future research directions. 
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