

Biological Characteristics of Michelolide and Its Neuroprotective / Anti-inflammatory Activity

Xu Jia-Ni¹, Gong Chang-Bao¹, Yang Si-Zhe¹, Zheng Yue-Juan^{2,3}, Yang Gui-Zhen^{1,2,*}

¹Department of Immunology and Microbiology, School of Integrative Medicine, Shanghai University of TCM, Shanghai 201203, China

²Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of TCM, Shanghai 201203, China

³Center for TCM and Immunology Research, School of Integrative Medicine, Shanghai University of TCM, Shanghai 201203, China

Abstract: Sesquiterpene lactones (SLs) isolated from natural medicinal plants have been traditionally used to treat numerous diseases, especially chronic inflammatory diseases in folk medicine. Dietary vegetables, such as lettuce and chicory are also important sources of SLs in daily life. Michelolide (MCL) is a recently discovered SL from Compositae plants. MCL can also be semi-synthesized from parthenolide, and undergo a biological, chemical transformation to dimethylamino michelolide (DMAMCL) and ACT001 for higher bioavailability and better biological function. Systematic pharmacokinetic researches showed that MCL and its derivatives were widely distributed in the heart, spleen, lung, kidney, brain, stomach, duodenum, testicle, fat, marrow, and muscle within 30 min, concentration reaches peak approximately at 1 h and significantly reduces 3 h later in a majority of tissues. MCL has been shown to have a good therapeutic effect on various cancers, diabetic nephropathy, nervous system disease, bacterial infectious disease, and autoimmune disease through immune response regulation, such as inhibition of NF- κ B, PI3K/AKT/mTOR and MAPK signaling pathways. MCL also showed a good blood-brain barrier permeability, and have the neuroprotective effect on stroke and Alzheimer's disease. Yet, the exact molecular mechanism of MCL remains unclear. Identification of relevant targets (such as pyruvate kinase muscle type 2 (PKM2)) also represents a great challenge for researchers. The biological characteristics, major biological activities, and molecular mechanisms of MCL were summarized in this review, indicating the potential clinical application for inflammatory and infectious diseases.

Keywords: Michelolide; Sesquiterpene Lactones; Anti-cancer; Anti-inflammation; Immunoregulation

DOI: [10.57237/j.jsts.2025.02.001](https://doi.org/10.57237/j.jsts.2025.02.001)

1 Introduction

Natural plants and plant constituents have been used to treat various diseases for centuries [1]. Natural products of medicinal plants are the most common sources of drug development [2]. *Sesquiterpene lactones (SLs)* represent a major terpenoid class, which are mainly extracts or sec-

ondary derivatives from plants, including *euphorbiaceae*, *umbelliferae*, *magnoliaceae*, and *compositae*, etc. [3, 4]. SLs are also widely found in microorganisms and some insects. SLs may have a highly significant role in a balanced diet [5]. Main dietary vegetables, such as lettuce

Funding: Shanghai Key Laboratory of Health Identification and Assessment (21DZ2271000).

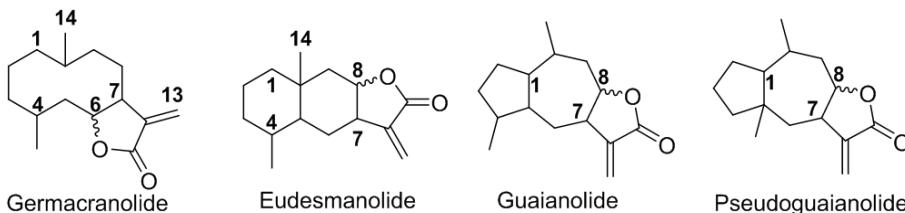
*Corresponding author: Yang Gui-Zhen, yanggziuch@163.com

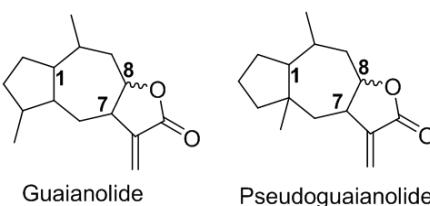
Received: 13 April 2025; Accepted: 10 July 2025; Published Online: 1 August 2025

<http://www.joscitechsoc.com>

and chicory, could also be important sources of SLs in daily life. SLs have diverse and important biological functions and physiological activities. In folk medicine, SLs are used as the active ingredient to treat diarrhea, burns, influenza, and neurodegradative disorder [6].

A large number of SLs and their derivatives have been reported every year [7, 8]. Over 5000 SLs have been discovered so far [9, 10]. These SLs display extensive structural diversity [11]. There are four types of SLs according to the main skeleton structure: germacrolide, eudesmanolide, guaianolide, and pseudoguaianolide [12]. All four types of SLs contain representative α -methylene- γ -lactones. Figure 1




Figure 1 Type and structure of sesquiterpene lactones (SLs)

2 Biological Characteristics of MCL

2.1 The Structure and Synthesis of MCL

MCL is a typical guaianolide SL, and the molecular formula is $C_{15}H_{20}O_3$ with a molecular weight of 248.32 Da. Its systematic name is (3aR,9R,9aR,9bS)-9-hydroxy-6,9-dimethyl-3-methylene-1,3,3a,4,5,7,8,9,9a,9b-decahydro-2H-cyclopenta[e]azulen-2-one. The colorless MCL crystals formed from ethyl acetate-hexane solution and its structure were described by Acosta *et al* in 1991 [20]. The two 5-membered rings are in half-chair conformation while the 7-membered ring is in a distorted-chair conformation. With the pseudomirror bisecting the double bond, the C-14 methyl group exhibits disorder between two rotamers, featuring a 7-membered ring trans-fused to the lactone. Molecules form dimers about two-fold axes through a weak hydrogen bond. The disordered H atom enables a hydroxyl group to form a bifurcated hydrogen bond with both lactone ring O atoms [20]. MCL can be extracted from the root bark of *Michelia compress* [21] and *Michelia champaca* [22]. However, drugs extracted from natural plants are often trace natural products, making semi-synthesis from abundant precursors essential. Parthenolide (PTL) is a prominent member

displays the four SL chemical structural types [13-15]. Guaianolide is the most widely used SLs in clinical practice [15], containing a 10-membered ring with a C-4 methyl group [16]. Artemisinin [17], thapsigargin [18] and parthenolide [19] are the best-known guaianolide SL that have been investigated in several clinical trials. Another guaianolide SL, michelolide (MCL) has drawn increasing attention over recent years due to its extensive therapeutic properties. MCL is an active component of plants in the *Magnoliae* family. Numerous studies report MCL's therapeutic applications. This review highlighted the biological characteristics and functions of MCL and explored underlying mechanisms.

of guaianolide SL, possessing a trans-6 α ,12-lactone moiety, making it a suitable precursor for the synthesis of guaianolide SL and its derivatives [23]. It has been reported that the MCL structure is similar to PTL (both consist of α -methylene- γ -lactone). The yield of MCL obtained from PTL by semi-synthesis can reach 90% [24, 25]. The synthesis process from PTL to MCL is the following (Figure 2): (1) *p*-Toluenesulfonic acid was dissolved in CH_2Cl_2 (the mixture named solution A). (2) PTL was dissolved in CH_2Cl_2 (the mixture named solution B). (3) Solution B was added drop by drop into solution A; the mixed solution was placed at 20 °C for 8 h. (4) After stirring the mixture at 25 °C for 15 h (5), the reaction was quenched with $NaHCO_3$. The organic layer was isolated and washed with saturated brine. (6) Activated carbon decolorization followed by reduced-pressure concentration gave crude MCL, recrystallized from acetone, and the purity of MCL was 90% [26].

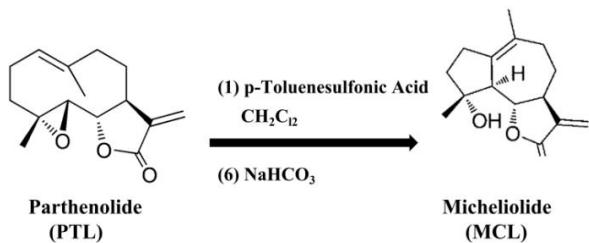


Figure 2 Structure of PTL and MCL and the semi-synthesis of MCL from PTL

2.2. Biological Chemical Transformation from MCL to DMAMCL

Due to the poor solubility of MCL crystal, Mai *et al* carried out derivatization to synthesize dimethylamino Michelolide (DMAMCL) [27]. DMAMCL, a water-soluble dimethylamino michael adduct of MCL, has the molecular formula $C_{21}H_{31}NO_7$ (MW 409.21 Da). It has been demonstrated that the C-4 hydroxyl group of MCL might be a suitable position for structural modification. The DMAMCL synthesis process with etherification or esterification of the hydroxyl group at the C-4 position in MCL is the following (Figure 3): (1) a mixture with $Me_2NH \cdot HCl$, K_2CO_3 , and CH_2Cl_2 was stirred at room temperature (the mixture named solution C) until $Me_2NH \cdot HCl$ dissolved; then, the solution C was immediately filtered. (2) MCL was added to solution C and stirred at 25 °C for 3 h. (3) The mixture was concentrated

in vacuo (4) and the residue was collected. CH_2Cl_2 addition and saturated brine wash preceded isolation of the organic layer. After drying (Na_2SO_4) and concentration, DMAMCL purity reached 82% [26].

In acidic HEPES (pH<5.0), solubility decreases significantly, DMAMCL was stable, and in HEPES with pH 7.4, DMAMCL was released into MCL slowly and consistently. In mouse plasma, MCL ($t_{1/2} = 2.64$ h) exhibits superior pharmacokinetic stability against PTL ($t_{1/2} = 0.34$ h) [28]. Surprisingly, DMAMCL has a much longer half-life than MCL. DMAMCL releases into MCL steadily for more than 8 h with very low acute toxicity in mice [27, 29]. This structural optimization from PTL to MCL, even to DMAMCL, has prolonged the sustained concentration of the active compound. DMAMCL's enhanced properties may translate to greater therapeutic potential than MCL, and are currently being used in clinical studies for acute myelogenous leukemia (AML).

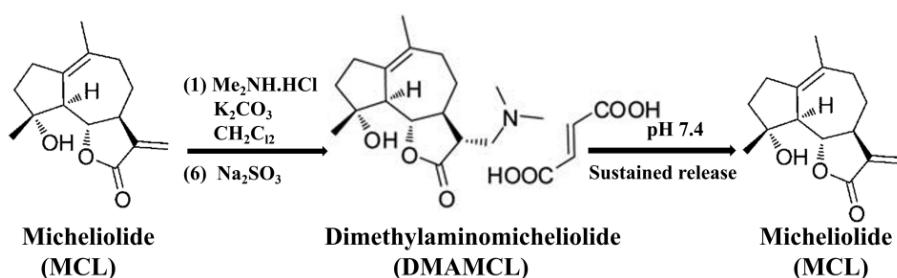


Figure 3 Chemical transformation from MCL to DMAMCL

2.3 Systematic Pharmacokinetic Research of MCL and Its Derivatives

Systematic pharmacokinetics research is essential to evaluate the efficacy and safety of natural compounds. Drug bioavailability is primarily governed by absorption and metabolism. Following single-dose i.v. administration (150 mg/kg DMAMCL aqueous solution in mice), plasma concentrations of both DMAMCL and MCL peaked rapidly before declining. The oral bioavailability of DMAMCL is 75% [29]. ACT001, the fumarate salt of DMAMCL, has the molecular formula $C_{17}H_{27}NO_3 C_4H_4O_4$, and its molecular weight is 409.47 Da. Xi *et al.* [30] characterized ACT001's rat pharmacokinetics (oral bioavailability = 50.82%), including distribution, excretion, and metabolism. After a single dose of 20 mg/kg ACT001 i.v. administration, the plasma concentration of ACT001 quickly reaches a peak and then gradually declines. ACT001 is absorbed into the liver and ovary

within 5 min. ACT001 is widely distributed in the heart, spleen, lung, kidney, brain, stomach, duodenum, testicle, fat, marrow, and muscle within 30 min, concentration reaches peak approximately at 1 h and significantly reduces 3 h later in a majority of tissues.

Numerous SLs demonstrate blood-brain barrier permeability and some studies have proved that MCL shows the neuroprotective effect [31]. In C57BL/6 mice receiving 40 mg/kg MCL i.p., serum and brain concentrations peaked at 2 h (unpublished data).

2.4 Biological Function of MCL and Its Derivatives

The exocyclic double bond in MCL dictates its bioactivity via nucleophile-targeting reactivity [32]. It has been reported that MCL and its derivatives are used to treat many kinds of cancers, bacterial infectious diseases, and autoimmune diseases. The anti-cancer activity of MCL

and its Derivatives is further discussed in the following paragraph.

2.5 Anticancer Activity of MCL and Its Derivatives

It has been found that the methylene-butyrolactone ring is an effective group to endow some SLs with anti-cancer biological activity [33]. To date, MCL's anticancer efficacy is best characterized in leukemia. MCL reduces primary AML stem cell populations. Cancer metabolic reprogramming (e.g., Warburg effect) requires PKM2, the pace-limiting glycolytic kinase [34], in which pyruvate kinase M2 (PKM2), the last pace-limiting kinase of glycolysis, has a critical role. PKM2 knockdown impairs podocyte energy metabolism and differentiation [35]. MCL suppresses leukemia growth and tumorigenesis in zebrafish xenografts by promoting the formation of PKM2 tetramer, thus inducing the retention of PKM2 tetramer in the cytoplasm, blocking PKM2 nuclear translocation [36].

Dynamic associated protein 1 (Drp1) is an essential protein for mitochondrial fission. The overexpression of Drp1 can inhibit mitochondrial fission, thereby inhibiting and slowing down cell apoptosis. MCL upregulates the expression of Drp1, thus promoting apoptosis of human breast cancer cell MCF-7 [37]. In addition, MCL triggers apoptosis of liver cancer cells *in vivo* and *in vitro* by activating caspase-3 and releasing mitochondrial ROS [38]. Moreover, other studies have shown that MCL induces Drp1-mediated apoptosis in MCF-7 breast cancer cells. MCL inhibits ovarian cancer proliferation (NF-κB suppression) and promotes apoptosis (caspase-9 induction) [39]. Via IL-6/STAT3 blockade, MCL exerts pro-apoptotic and anti-proliferative effects in gastric cancer *in vitro* and *in vivo* [40].

In brief, MCL inhibits the proliferation of malignant cells by reducing energy metabolism and promotes apoptosis by inhibiting the cell cycle. It is reasonable to expect that MCL could be used in clinical trials as a useful therapeutic agent for cancer treatment.

3 Cardioprotective Activity of MCL

Chronic anticancer drug use induces cardiotoxicity. MCL has a cardioprotective effect. Doxorubicin (an-anthracycline class) treats breast and lung cancers and hematopoietic malignancies [41]. Myocardial biopsies reveal

cardiotoxicity even at low doxorubicin doses [42]. MCL confers cardioprotection against doxorubicin toxicity in mice via PI3K/Akt/NF-κB pathway modulation [43].

4 Neuroprotective Activity of MCL

Microglia-driven neuroinflammation accelerates neurodegeneration [44]. Targeting microglial overactivation offers therapeutic potential for neurodegenerative disorders [45]. MCL suppresses inflammatory responses in bacterially infected mice. MCL achieves significant brain accumulation by crossing the blood-brain barrier, which is a key CNS drug delivery challenge. ACT001, a derivative of MCL, was detected in the brain [30]. Sun *et al* [31] demonstrated that in LPS-stimulated BV-2 microglia, MCL downregulates iNOS and COX-2, suppresses IL-1β, IL-6 and TNF-α transcription via IκBα/NF-κB, AKT, JNK, P38 and ERK1/2 inhibition, and induces anti-oxidant protein heme oxygenase-1 (HO^{-1}) through Nrf2 transcriptional activation. Collectively, MCL demonstrates neuroprotective efficacy against neuroinflammation-mediated neurodegeneration.

5 Anti-inflammatory Activity of MCL and Its Derivatives

Inflammation drives pathogenesis in multiple pathologies, including infections and autoimmune disorders. MCL's potent anti-inflammatory activity underscores its therapeutic potential for inflammation-associated diseases.

6 Anti-bacterial Inflammatory Activity of MCL

MCL ameliorates LPS-induced inflammation and bacterial immune responses in established models. Gram-positive (G^+) bacteria (e.g., *Staphylococcus*) are predominant sepsis pathogens [46]. Jiang *et al* [47] found that MCL improved the survival rate of mice, which were challenged with a lethal dose of *Staphylococcus aureus* by reducing the secretion of inflammatory mediators. In the MRSA infection mouse model, MCL ameliorated the organ damage of liver and kidney and down-regulated the expression of CCL2, IL-6, IFN-γ, MCP-1, and TNF-α by inhibiting the activation of PI3K/AKT and NF-κB path-

ways, indicating it can also treat G[−] bacterial infection.

Mycobacterium tuberculosis (Mtb) induces granulomatous lung inflammation and systemic responses, posing persistent global health risks [48]. In Mtb-induced inflammatory response in Raw264.7 cells, MCL decreased the secretion of IL-1 β , TNF- α , iNOS, COX2, and NO through inhibiting PI3K/Akt/NF- κ B pathway [49]. By modulating host immunity, MCL represents a promising anti-infective therapeutic candidate.

7 Anti-autoimmune Inflammatory Activity of MCL

Autoimmune disease is a kind of disease in which the tissue and organs are damaged because the autoimmune tolerance is broken, the immune system is activated, and the body attacks its own organs [50]. The traditional glucocorticoid and immunosuppressant can timely control the diseases, but long-term use of these drugs will bring a series of side effects, which seriously affect the life quality of patients and could even be life-threatening [51]. Diabetic nephropathy predominates among chronic kidney diseases amid rising diabetes prevalence [52]. Systemic and renal inflammation characterize diabetic nephropathy [53]. A low dose of DMAMCL has been found to exert its renal protective role by reducing the serum levels of IL-1, IL-6, MCP-1, and TNF- α in the diabetic nephropathy mouse model [54]. Peritoneal fibrosis drives ultrafiltration failure in long-term dialysis patients [55]. MDAMCL halted the progression of peritoneal fibrosis in a

peritoneal dialysis-related peritoneal fibrosis mouse model by promoting autophagy and inhibiting extracellular matrix deposition [56].

Inflammatory bowel disease (IBD) involves chronic gastrointestinal inflammation. In a mouse model of DSS-induced colitis, both MCL and DMAMCL administered intraperitoneally, attenuated colitis and decreased colitis-associated cancer incidence rate by inhibiting the expression of IL-1 β , IL-6, and TNF- α [26]. Collagen-induced arthritis (CIA) models rheumatoid arthritis (RA), a systemic autoimmune disorder [57]. MCL attenuates paw swelling and articular cartilage degeneration by suppressing M-CSF, TIMP-1, and C5a expression [58]. Ankylosing spondylitis (AS) progressively inflames the axial skeleton [59]. Impairment of negatively regulating the immune response in AS patients might be its etiology [60]. MCL ameliorates AS via NLRP3 inflammasome inhibition and Th1/Th2 balance modulation through NF- κ B regulation [61]. MCL also alleviated hepatic steatosis in Db/Db mice by inhibiting inflammation and promoting autophagy via inhibiting NF- κ B and AMPK/mTOR signaling pathway [62]. These results suggest that MCL might be considered for use as a novel treatment against autoimmune diseases.

8 Functional Mechanisms of MCL

Combined with the research results of other research groups, MCL may inhibit NF- κ B, PI3K/AKT/mTOR and MAPK pathways. The biological function of MCL and its derivatives were summarized in Table 1.

Table 1 Schematic diagram of MCL functional mechanism

Disease	Animal	Administration	Dose	Mechanism	Ref
Leukemia	zebrafish	<i>i.p.</i>	10 μ g/mL	Inhibiting PKM2 nuclear translocation	[36]
Liver cancer	mouse	<i>i.p.</i>	20 mg/kg	Inducing apoptosis	[38]
Cardiotoxicity	mouse	<i>i.p.</i>	12.5, 25, 50 mg/kg	Regulating PI3K/AKT/NF- κ B signaling	[43]
Diabetic kidney disease	mouse	<i>i.p.</i>		Inhibiting renal inflammation	[54]
Renal fibrosis	mouse	<i>i.g.</i>	25 mg/kg	Suppressing Mtdh/BMP/MAPK signaling	[63]
Hepatic steatosis	mouse	<i>i.g.</i>	12.5, 25, 50 mg/kg	Inhibiting inflammation and promoting autophagy through PPAR- γ -mediated NF- κ B and AMPK/mTOR pathways	[62]
Peritoneal fibrosis	mouse	<i>i.p.</i>	50 mg/kg	Activation of autophagy	[56]
Colitis and colitis-associated cancer	mouse	<i>i.p.</i>	5, 40 mg/kg	Inhibiting inflammation	[26]
Rheumatoid arthritis	mouse	<i>i.p.</i>	30 mg/kg	Inhibiting inflammation	[58]
Ankylosing spondylitis	mouse	<i>i.g.</i>	20, 50 mg/kg	Suppressing NLRP3 inflammasome while maintaining Th1/Th2 balance via NF- κ B regulation	[61]

9 Discussion and Perspective

Molecular biology advances enable cellular/molecular-level

research on natural product active components. MCL demonstrates established anticancer, anti-inflammatory, and immunomodulatory activities. Their precise molecular mechanisms remain largely uncharacterized. The diversity of chem-

ical structure and broad pharmacological activities of MCL and its derivatives represent a big challenge in identifying their targets, thus leading to a lack of in-depth studies on the mechanisms of MCL. Thus, a lot of effort is still being put into exploring the biological function and mechanism of MCL. Although one recent study reported that MCL bound covalently to PKM2 at the cysteine 424 (C424) residue of PKM2 [36], there are still many questions about the target of MCL. One question is whether MCL has a therapeutic role in many diseases by regulating multiple target molecules in cells. Another question is whether MCL may have a therapeutic role in a variety of diseases by acting on a ubiquitous intracellular target molecule (such as PKM2), thereby affecting multiple downstream signaling pathways. Due to the deficiency of evidence on the regulation of the above-mentioned signaling pathways by PKM2, we could not draw a conclusion and answer these questions.

At present, many difficulties are encountered in the treatment of many diseases. For example, targeted drugs cannot accurately aim at cancer cells alone. The treatment of infectious diseases is faced with the problem of multiple drug resistance. There is a lack of effective clinical drugs for autoimmune diseases. MCL may have great application prospects in these diseases due to its extensive anti-inflammatory and immunomodulatory effects. For MCL regulation of immune inflammation, there is also ongoing research on stroke and Alzheimer's disease. It was also found that the immunoregulatory mechanism of MCL may affect the functional state of macrophages and neutrophils.

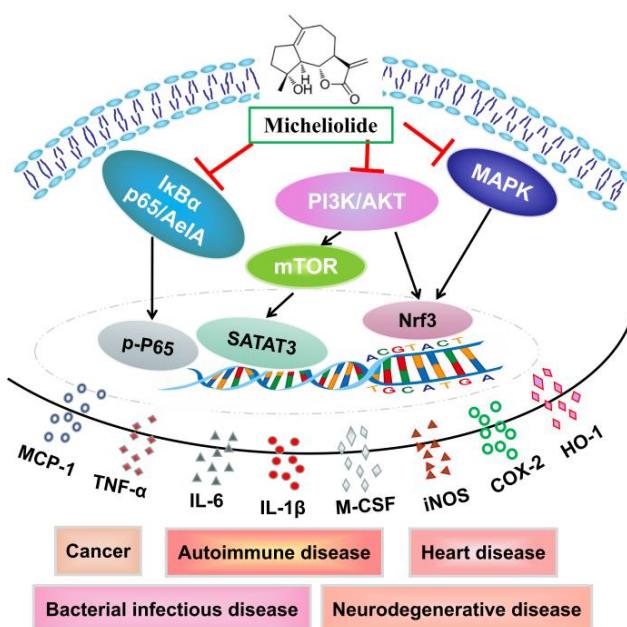


Figure 4 Graphical abstract

Therapeutic applications of MCL similarly require further exploration. MCL derivatives show significant promise as novel therapeutics for inflammation-associated disorders and malignancies.

MCL and its derivatives treat cancers, bacterial infectious disease, and autoimmune disease by inhibiting the activity of NF-κB, PI3K/AKT/mTOR and MAPK signal pathways.

Conflict of Interest

The authors confirm that this article has no conflict of interest.

References

- [1] Thakur RS, Hussain AP. Major Medicinal Plants of India. Central Institute of Medicinal and Aromatic Plants; 1989.
- [2] Thomford NE, Senthilbano DA, Rowe A, *et al.* Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery [J]. *Int J Mol Sci*, 2018, 19(6): 01578. <https://doi.org/10.3390/ijms19061578>
- [3] Guerra FM, Moreno-Dorado FJ, Jorge ZD, *et al.* Recent advances in the synthesis of sesquiterpenolides from Umbelliferae [J]. *Nat Prod Commun*, 2011, 6(4): 491-496. <https://doi.org/10.1177/1934578X1100600409>
- [4] Canales M, Hernández T, Caballero J, *et al.* Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México [J]. *J Ethnopharmacol*, 2005, 97(3): 429-439. <https://doi.org/10.1016/j.jep.2004.11.013>
- [5] Trendafilova A, Moujir LM, Sousa PMC, *et al.* Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents [J]. *Foods*, 2020, 10(1): E65. <https://doi.org/10.3390/foods10010065>
- [6] Ghantous A, Gali-Muhtasib H, Vuorela H, *et al.* What made sesquiterpene lactones reach cancer clinical trials? [J]. *Drug Discov Today*, 2010, 15(15-16): 668-678. <https://doi.org/10.1016/j.drudis.2010.06.002>
- [7] Drogosz J, Janecka A. Helenalin-A Sesquiterpene Lactone with Multidirectional Activity [J]. *Curr Drug Targets*, 2019, 20(4): 444-452. <https://doi.org/10.2174/138945011966181012125230>
- [8] Li X, Yuan K, Zhu Q, *et al.* Andrographolide Ameliorates Rheumatoid Arthritis by Regulating the Apoptosis-NETosis Balance of Neutrophils [J]. *Int J Mol Sci*, 2019, 20(20): 5035. <https://doi.org/10.3390/ijms20205035>

[9] Chadwick M, Trewin H, Gawthrop F, *et al.* Sesquiterpenoids lactones: benefits to plants and people [J]. *Int J Mol Sci*, 2013, 14(6): 12780-12805. <https://doi.org/10.3390/ijms140612780>

[10] Heinrich M, Robles M, West JE, *et al.* Ethnopharmacology of Mexican asteraceae (Compositae) [J]. *Annu Rev Pharmacol Toxicol*, 1998, 38: 539-565. <https://doi.org/10.1146/annurev.pharmtox.38.1.539>

[11] Fraga BM. Natural sesquiterpenoids [J]. *Nat Prod Rep*, 2013, 30(9): 1226-1264. <https://doi.org/10.1039/b706427f>

[12] Barbetti P, Chiappini I, Fardella G, Grandolini G, Casinovi CG. Sesquiterpene lactones of pharmacological importance: structural and functional properties. IV. First revision. Ann Ist Super Sanita. 1983; 19(2-3): 427-448.

[13] Barbetti P, Casinovi CG. Sesquiterpene lactones of pharmacological importance: structural and functional properties. I. Eudesmanolides. Ann Ist Super Sanita. 1981; 17(2): 255-282.

[14] Barbetti P, Casinovi CG. Sesquiterpene lactones of pharmacological importance: structural and functional properties. II. Germacranolides. Ann Ist Super Sanita. 1981; 17(2): 283-322.

[15] Barbetti P, Fardella G, Casinovi CG. Lactone sesquiterpenes of pharmacological interest: structural and functional properties III: guaianolides. Ann Ist Super Sanita. 1982; 18(4): 819-830.

[16] Hu X, Musacchio AJ, Shen X, *et al.* Allylative Approaches to the Synthesis of Complex Guaianolide Sesquiterpenes from Apiaceae and Asteraceae [J]. *J Am Chem Soc*, 2019, 141(37): 14904-14915. <https://doi.org/10.1021/jacs.9b08001>

[17] Miller LH, Su X. Artemisinin: discovery from the Chinese herbal garden [J]. *Cell*, 2011, 146(6): 855-858. <https://doi.org/10.1016/j.cell.2011.08.024>

[18] Andersen TB, Lopez CQ, Manczak T, *et al.* Thapsigargin-from Thapsia L to mipsagargin [J]. *Molecules*, 2015, 20(4): 6113-6127. <https://doi.org/10.3390/molecules20046113>

[19] Ghantous A, Sinjab A, Herceg Z, *et al.* Parthenolide: from plant shoots to cancer roots [J]. *Drug Discov Today*, 2013, 18(17-18): 894-905. <https://doi.org/10.1016/j.drudis.2013.05.005>

[20] Acosta JC, Froncek FR, Fischer NH. Michelolide. *Acta Crystallogr C*. 1991; 47(Pt 12): 2702-2704.

[21] Ogura M, Cordell GA, Farnsworth NR. Potential anticonvulsants. 3. Anticonvulsant activity of Thalictrum alkaloids. *Phytochemistry*. 1978; 17(5): 957-958.

[22] Jacobsson U, Saminathan S. New sesquiterpene lactones from Pluchea indica. *Phytochemistry*. 1995; 39(4): 839-842.

[23] Castañeda-Acosta J, Fischer NH, Vargas D. Biomimetic transformations of parthenolide [J]. *J Nat Prod*, 1993, 56(1): 90-98. <https://doi.org/10.1021/np50091a013>

[24] Neukirch H, Kaneider NC, Wiedermann CJ, *et al.* quiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer [J]. *Lab Invest*, 2014, 94(9): 950-965. <https://doi.org/10.1038/labinvest.2014.89>

[25] Ma WW, Shi QQ, Ding YH, *et al.* Synthesis of micheliolide derivatives and their activities against AML progenitor cells [J]. *Molecules*, 2013, 18(5): 5980-5992. <https://doi.org/10.3390/molecules18055980>

[26] Zhao AQ, Zhao JH, Zhang SQ, *et al.* Determination of parthenolide in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study [J]. *J Pharm Biomed Anal*, 2016, 119: 99-103. <https://doi.org/10.1016/j.jpba.2015.11.039>

[27] Zhang Q, Lu Y, Ding Y, *et al.* Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells [J]. *J Med Chem*, 2012, 55(20): 8757-8769. <https://doi.org/10.1021/jm301064b>

[28] Xi XN, Liu N, Wang QQ, *et al.* Pharmacokinetics, tissue distribution and excretion of ACT001 in Sprague-Dawley rats and metabolism of ACT001 [J]. *J Chromatogr B Analyt Technol Biomed Life Sci*, 2019, 1104: 29-39. <https://doi.org/10.1016/j.jchromb.2018.11.004>

[29] Sun Z, Li G, Tong T, *et al.* Michelolide suppresses LPS-induced neuroinflammatory responses [J]. *PloS one*, 2017, 12(10): e0186592. <https://doi.org/10.1371/journal.pone.0186592>

[30] Rodriguez E, Towers GHN, Mitchell JC. Biological activities of sesquiterpene lactones. *Phytochemistry*. 1976; 15(11): 1573-1580.

[31] Wen B, Hexum JK, Widen JC, *et al.* A redox economical synthesis of bioactive 6,12-guaianolides [J]. *Org Lett*, 2013, 15(11): 2644-2647. <https://doi.org/10.1021/o1400904y>

[32] Sun L, Suo C, Li ST, *et al.* Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect [J]. *Biochim Biophys Acta Rev Cancer*, 2018, 1870(1): 51-66. <https://doi.org/10.1016/j.bbcan.2018.06.005>

[33] Yuan Q, Miao J, Yang Q, *et al.* Role of pyruvate kinase M2-mediated metabolic reprogramming during podocyte differentiation [J]. *Cell Death Dis*, 2020, 11(5): 355. <https://doi.org/10.1038/s41419-020-2481-5>

[34] Li J, Li S, Guo J, *et al.* Natural Product Michelolide (MCL) Irreversibly Activates Pyruvate Kinase M2 and Suppresses Leukemia [J]. *Journal of medicinal chemistry*, 2018, 61(9): 4155-4164. <https://doi.org/10.1021/acs.jmedchem.8b00241>

[35] Jia Y, Zhou L, Tian C, *et al.* Dynamin-related protein 1 is involved in michelolide-induced breast cancer cell death [J]. *Onco Targets Ther*, 2015, 8: 3371-3381. <https://doi.org/10.2147/OTT.S91805>

[36] Yu L, Chen W, Tang Q, *et al.* Michelolide Inhibits Liver Cancer Cell Growth Via Inducing Apoptosis And Perturbing Actin Cytoskeleton [J]. *Cancer Manag Res*, 2019, 11: 9203-9212. <https://doi.org/10.2147/CMAR.S216870>

[37] Qi Z, Li YH, Ding YH, *et al.* Study of effects of michelolide on ovarian cancer cell lines and its mechanism [J]. *Zhonghua Fu Chan Ke Za Zhi*, 2016, 51(9): 688-692. <https://doi.org/10.3760/cma.j.issn.0529-567X.2016.09.010>

[38] Tang X, Ding Q, Chen C, *et al.* Michelolide inhibits gastric cancer growth in vitro and in vivo via blockade of the IL-6/STAT3 pathway [J]. *Pharmazie*, 2019, 74(3): 175-178. <https://doi.org/10.1691/ph.2019.8816>

[39] McGowan JV, Chung R, Maulik A, *et al.* Anthracycline Chemotherapy and Cardiotoxicity [J]. *Cardiovasc Drugs Ther*, 2017, 31(1): 63-75. <https://doi.org/10.1007/s10557-016-6711-0>

[40] Al-Malky HS, Al Harthi SE, Osman AM. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance [J]. *J Oncol Pharm Pract*, 2020, 26(2): 434-444. <https://doi.org/10.1177/1078155219877931>

[41] Kalantary-Charvadeh A, Samajou D, Hemmati-Dinarvand M, *et al.* Michelolide Protects Against Doxorubicin-Induced Cardiotoxicity in Mice by Regulating PI3K/Akt/NF-κB Signaling Pathway [J]. *Cardiovasc Toxicol*, 2019, 19(4): 297-305. <https://doi.org/10.1007/s12012-019-09511-2>

[42] Hickman S, Izzy S, Sen P, *et al.* Microglia in neurodegeneration [J]. *Nature Neuroscience*, 2018, 21(10): 1359-1369. <https://doi.org/10.1038/s41593-018-0242-x>

[43] Dong Y, Li X, Cheng J, *et al.* Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? [J]. *International journal of molecular sciences*, 2019, 20(3): 558. <https://doi.org/10.3390/ijms20030558>

[44] Otto M. Staphylococcus epidermidis: a major player in bacterial sepsis? [J]. *Future Microbiol*, 2017, 12(12): 1031-1033. <https://doi.org/10.2217/fmb-2017-0143>

[45] Jiang X, Wang Y, Qin Y, *et al.* Michelolide provides protection of mice against Staphylococcus aureus and MRSA infection by down-regulating inflammatory response [J]. *Sci Rep*, 2017, 7: 41964. <https://doi.org/10.1038/srep41964>

[46] Koch A, Mizrahi V. Mycobacterium tuberculosis [J]. *Trends Microbiol*, 2018, 26(6): 555-556. <https://doi.org/10.1016/j.tim.2018.02.012>

[47] Zhang Q, Jiang X, He W, *et al.* MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF-κB and NLRP3 Inflammasome Activation [J]. *Mediators of inflammation*, 2017, 2017: 2432904. <https://doi.org/10.1155/2017/2432904>

[48] Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update [J]. *J Intern Med*, 2015, 278(4): 369-395. <https://doi.org/10.1111/joim.12395>

[49] Rose NR. Prediction and Prevention of Autoimmune Disease in the 21st Century: A Review and Preview [J]. *Am J Epidemiol*, 2016, 183(5): 403-406. <https://doi.org/10.1093/aje/kwv292>

[50] Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities [J]. *Clin J Am Soc Nephrol*, 2017, 12(12): 2032-2045. <https://doi.org/10.2215/CJN.11491116>

[51] Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy [J]. *Clin Sci (Lond)*, 2013, 124(3): 139-152. <https://doi.org/10.1042/CS20120198>

[52] Liu W, Chen X, Wang Y, *et al.* Michelolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice [J]. *Pharmacol Res*, 2019, 150: 104506. <https://doi.org/10.1016/j.phrs.2019.104506>

[53] Zhang Z, Jiang N, Ni Z. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis [J]. *Front Med*, 2017, 11(3): 349-358. <https://doi.org/10.1007/s11684-017-0571-2>

[54] Li S, Peng F, Gong W, *et al.* Dimethylaminomichelolide ameliorates peritoneal fibrosis through the activation of autophagy [J]. *J Mol Med (Berl)*, 2019, 97(5): 659-674. <https://doi.org/10.1007/s00109-019-01757-1>

[55] Zhou L, Wang J, Li J, *et al.* 1,25-Dihydroxyvitamin D3 Ameliorates Collagen-Induced Arthritis via Suppression of Th17 Cells Through miR-124 Mediated Inhibition of IL-6 Signaling [J]. *Front Immunol*, 2019, 10: 178. <https://doi.org/10.3389/fimmu.2019.00178>

[56] Xu H, Wang J, Wang C, *et al.* Therapeutic effects of michelolide oParthenolide and its photochemically synthesized 1(10)Z isomer: chemical reactivity and structure-activity relationship studies in human leucocyte chemotaxis [J]. *Bioorg Med Chem*, 2003, 11(7): 1503-1510. [https://doi.org/10.1016/S0968-0896\(02\)00553-9](https://doi.org/10.1016/S0968-0896(02)00553-9)

[57] Zhai JD, Li D, Long J, *et al.* Biomimetic semisynthesis of arglabin from parthenolide [J]. *J Org Chem*, 2012, 77(16): 7103-7107. <https://doi.org/10.1021/jo300888s>

[58] Viennois E, Xiao B, Ayyadurai S, *et al.* Michelolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. *Lab Invest.* 2014; 94: 950–65. <https://doi.org/10.1038/labinvest.2014.89>

[59] van der Linden S, van der Heijde D. Ankylosing spondylitis. Clinical features [J]. *Rheum Dis Clin North Am*, 1998, 24(4): 663-676. [https://doi.org/10.1016/S0889-857X\(05\)70036-3](https://doi.org/10.1016/S0889-857X(05)70036-3)

[60] Smith JA. Update on ankylosing spondylitis: current concepts in pathogenesis [J]. *Curr Allergy Asthma Rep*, 2015, 15(1): 489. <https://doi.org/10.1007/s11882-014-0489-6>

[61] Tian ZG, Yao M, Chen J. Michelolide alleviates ankylosing spondylitis (AS) by suppressing the activation of the NLRP3 inflammasome and maintaining the balance of Th1/Th2 via regulating the NF- κ B signaling pathway [J]. *Ann Transl Med*, 2020, 8(16): 991. <https://doi.org/10.21037/atm-20-4987>

[62] Zhong J, Gong W, Chen J, *et al.* Michelolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR- γ -mediated NF- κ B and AMPK/mTOR signaling [J]. *Int Immunopharmacol*, 2018, 59: 197-208. <https://doi.org/10.1016/j.intimp.2018.03.036>

[63] Peng F, Li H, Li S, *et al.* Michelolide ameliorates renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway [J]. *Lab Invest*, 2019, 99(8): 1092-1106. <https://doi.org/10.1038/s41374-019-0245-6>